Войти в почту

Технология лазерной сварки позволит на четверть облегчить вес самолета

И сегодня на Новосибирском авиазаводе имени Валерия Чкалова изготавливают истребители-бомбардировщики Су-34, ставшие основой боевой мощи российских ВВС. Тут же изготавливают важнейшие узлы истребителя пятого поколения Су-57 и ближнемагистрального авиалайнера "Суперджет-100" (окончательно эти машины собирают в Комсомольске-на-Амуре).

Технология лазерной сварки позволит на четверть облегчить вес самолета
© Российская Газета

В Новосибирском государственном техническом университете (НГТУ НЭТИ) готовят инженеров для авиастроения. В Сибирском НИИ авиации имени академика Сергея Чаплыгина конструируют перспективные летательные аппараты и проводят их испытания. А в новосибирском Академгородке разрабатывают новые технологии и материалы для авиакосмической отрасли.

Одним из самых "устремленных в небо" по праву считается Институт теоретической и прикладной механики (ИТПМ) Сибирского отделения РАН имени академика Сергея Христиановича. Здесь давно и плодотворно работают над тем, чтобы отечественные самолеты и ракеты летали быстрее и лучше всех в мире. Занимаются в ИТПМ и перспективными технологиями авиастроения, например лазерной сваркой.

Конечно, сегодня широко используются композитные материалы, но наиболее сложные и ответственные детали, которые могут работать в условиях высоких температур и высоких нагрузок изготавливают из "крылатых металлов" - титана и алюминия. А скрепляют их по старинке - заклепками. Процесс этот трудоемкий и к тому же вредный для здоровья тех, кто этим занимается - слишком сильные шум и вибрация. Кроме того, заклепочная технология утяжеляет конструкцию, что в авиакосмической отрасли очень большой минус. По оценкам экспертов ВНИИ авиационных материалов, замена заклепок на сварку может снизить вес конструкции летательного аппарата почти на четверть!

Замена заклепок на сварку может снизить массу летательного аппарата почти на четверть

"Метод заклепочного соединения давно перестал быть технологичным. Сравните: скорость автоматической клепки 0,2-0,3 метра в минуту, тогда как лазерная сварка позволяет сваривать за минуту четыре метра", - поясняет заведующий лабораторией лазерных технологий ИТПМ СО РАН Александр Маликов.

Неудивительно, что ученые уже много лет пытаются заменить клепку сваркой, но пока это не получается из-за того, что сварной шов выходит хрупким. Его прочностные характеристики, по оценкам специалистов, составляют лишь 50-80 процентов от значений исходного сплава. При создании самолета или ракеты это недопустимо.

Поэтому настоящим прорывом стали исследования специалистов ИТПМ СО РАН, позволившие значительно увеличить прочность сварного соединения. Надо отметить, что в этой масштабной работе также принимали участие ученые еще нескольких НИИ Сибирского отделения - химии твердого тела (ИХТТ), ядерной физики (ИЯФ), гидродинамики (ИГ). В этом и состоит ключевое преимущество новосибирского Академгородка.

Ведь специалисты самых разных отраслей знания работают здесь в соседних зданиях, им легко объединять усилия, а настоящие прорывы, как правило, происходят именно на стыках наук.

"При сварке металлических деталей в зоне плавления происходит перераспределение примесей, что приводит к качественным изменениям прочностных характеристик материала, - отмечает старший научный сотрудник ИХТТМ СО РАН Алексей Анчаров. - Он становится менее прочным, более твердым и, следовательно, подверженным быстрому распространению трещин в шовном материале. Наша задача состоит в том, чтобы понять, что происходит в зоне плавления, как перераспределяются примеси, какие они образуют соединения, какие интерметаллические фазы проходят, и отработать те режимы лазерной сварки, при которых все эти негативные процессы не успевали бы развиться.

Для изучения того, что происходит во время сварки титана и алюминия, ученые использовали возможности Сибирского центра синхротронного и терагерцового излучения, расположенного в ИЯФ СО РАН.

"Совместные исследования показали, что применение синхротронного излучения для диагностики создаваемых материалов - насущная необходимость, - отмечает Александр Маликов. - Высокая интенсивность и разрешающая способность источника синхротронного излучения позволили нам на качественно новом уровне понимать, как взаимодействуют сплавы. А ввод в строй Сибирского кольцевого источника фотонов (СКИФ), проект которого реализуется в Новосибирске, улучшит эти возможности в разы. Наша конечная цель - получить сварную технологию, которую можно будет внедрять в авиацию".

Научившись качественно сваривать листы алюминия и титана, исследователи пошли дальше и разработали научные основы технологии лазерной сварки уже алюминиево-литиевых сплавов. Так что самый легкий на свете металл, который нашел сегодня широкое применение в аккумуляторах, в ближайшем будущем тоже станет "крылатым".