«Умная» сити-ферма повысит урожайность базилика
Российские ученые создали «умную» сити-ферму, которая в два раза повысила урожайность базилика. Разработка также позволила в три раза увеличить содержание полезных биологически активных соединений в сравнении с обычным культивированием этого растения на агропромышленных предприятиях. Результаты исследования опубликованы в журнале Photonics, сообщает пресс-служба СПбГЭТУ «ЛЭТИ».Базилик — ценная пряновкусовая культура, широко распространенная и выращиваемая в огородах и тепличных комплексах по всему миру. Среди причин такой популярности — удобность проращивания, а также активное использование в медицине и пищевой индустрии (в качестве ингредиентов для соусов и салатов). В частности, потому что базилик является дешевым источником фитонутриентов: эфирных масел и фенольных соединений, которые способствуют профилактике сердечно-сосудистых, хронических заболеваний и определенных видов рака. Кроме того, базилик содержит целый ряд физиологически активных компонентов, таких как минералы и вторичные метаболиты, которые являются ценным сырьем для фармацевтической, косметической и пищевой промышленности.По этим причинам в производстве и повседневном рационе потребителей в последние годы постоянно увеличивается количество продуктов из базилика и некоторых других подобных трав. В свою очередь, появляется потребность в новых более эффективных способах выращивания таких растений и повышения их урожайности.«Наша научная группа разработала "умную" сити-ферму для более эффективного выращивания сельхозкультур. В частности, нам удалось почти в два раза повысить урожайность базилика по сравнению с обычными методами его выращивания в теплицах. Благодаря использованию оптимизированного спектрального состава светодиодного излучения мы смоли на 112% улучшить продуктивность базилика, а также в три раза увеличить накопление биологически активных соединений флавоноидов», — рассказала аспирант кафедры фотоники СПбГЭТУ «ЛЭТИ» Мария Дегтерева.Предыдущий проект специалистов ЛЭТИ в сфере агробиофотоники был посвящен созданию программируемой фитолампы с перестраиваемыми режимами света. Тогда с ее помощью удалось повысить урожайность листового салата (Lactuca sativa L.) почти на 60%. В новом исследовании эксперименты, занявшие 70 дней, проводились на базилике.Ученые существенно улучшили технологию выращивания. Так, была внедрена система гидропонного выращивания вместо классического почвенного. Она позволила улучшить и ускорить рост базилика. Для получения необходимых микро- и макроэлементов стал применяться минеральный раствор. Для модернизации системы освещения исследователи разработали специальные светодиодные лампы с разным соотношением излучения красного и синего диапазонов спектра, которое является наиболее благоприятным видом освещения для растений. Причем созданные источники излучения могут применяться как в промышленных агрокомплексах, так и в домашнем выращивании для улучшения характеристик роста базилика при остальных одинаковых условиях.Такие источники излучения обеспечили освещение с заданным спектральным составом и плотностью фотосинтетического фотонного потока (один из основополагающих параметров в области агробиофотоники). Это помогло отслеживать динамику развития базилика на разных этапах роста. Анализ полученных результатов дает возможность выявить наиболее эффективные световые режимы в течение полного вегетационного периода роста растений.«Кроме того, работа всей системы является автоматизированной: полив и освещение растений, а также внутренний климат помещения контролируются с помощью модуля автоматизации, тем самым делая технологию выращивания во многом независимой от человеческого фактора и минимизируя отклонения технологии выращивания для разных боксов в эксперименте. В ходе эксперимента необходимо было обеспечить бесперебойность источников освещения, а также бесперебойную работу гидропонной установки. Для этого в качестве резервного источника питания ситифермы мы использовали полностью автоматизированную солнечную электростанцию, установленную на крыше университета», — отметил аспирант кафедры фотоники СПбГЭТУ «ЛЭТИ» Евгений Левин.